A Retake on Statistical Genetics

Types of Varations:

1. Somatogenic Variations

Are not inheritable.

Result of 'Phenotypic Plasticity'

ie- and organism's capacity to acclamatize to its environment.

2. Blastogenic Variations

Inheritable.

Are of 2 types:

a. Continous:

Fluctuating.

Do not give rise to new species.

- i. Meristic: Number of parts- Number of grains in an ear of wheat.
- ii. Substantive: Size, shape and color ()
- b. Discontinous

Also known as Mutations, Sports or Saltations.

Give rise to new species.

- i. Meristic: Number of parts- Polydactyly.
- ii. Substantive: Shape, color and size- Hairless cat, short legged sheep.

Some Allele Types:

1. Isoalleles

Alleles that produce similar phenotypes but can be distinguished by different optima.

2. Pseudoalleles

Two closely linked genes that can be identified by rare crossing over.

Eq- Star and asterix in traits in Drosophila.

Phenomenon	Example	Phen. Ratio	Comments
Complementary Genes	-Purple Flower Color in Sweet Pea (<i>Lathyrus odoratus</i>)	9:7 (9:3+3+1)	Genes expressed only when both of them are present in dominant phenotype. If even 1 of them is not present
			in dominant phenotype, the character is not expressed. Usually happens when 2 enzymes work together to produce a product. (A_bb=aaB_=aabb = Recessive)
Lethal Genes	-Yellow Body Allele in Mouse -Yellow Leaf in <i>Antirhinum majus</i>	2:1 (1-dead:2:1)	Gene lethal in homozygous dominant condition.
			Therefore 1 out of 4 dies. And the 2 other heterozygotes account for the dominant phenotype representation.
Duplicate Genes	-Capsules of Shephard's Purse. (<i>Capsella sp.</i>) Top Shaped Dominant.	15:1 (9+3+3:1)	2 unrelated genes, which may or may not be present on same chromosome, produce same phenotype.
			Therefore even if one gene is present in a dominant phenotype, the character is expressed. (A_B_= A_bb=aaB_ = Dominant)
Recessive Epistasis	-Body Color in Mice (Agouti color et al.)	9:3:4 (9:3:3+1)	Usually takes place when an enzyme needs another to produce a phenotype. E_A_=9: E_aa=3: ee=4
			E_C_ gives agouti mice. But when E is not present, C gene, even if present, cannot express its phenotype.
Dominant Epistasis	-Fruit Color in Summer Squash (<i>Cucurbita pepo</i>)	12:3:1 (9+3:3:1)	Epistatic gene 'E' masks expression of hypostatic 'A' when present in dominant phenotype. E= 12: eeA_= 3 : eeaa= 1
			Here, W gives white fruits, wwY_ gives yellow fruits, wwyy gives green fruits. Had wwyy given white fruits, effect would've been same as Inhibitory gene interaction.

gene inhibits expression of other gene. Here, the 'I' gene for white feathers inhibits activity of gene. I = iicc = White iiC_ = Red Can be due to RNAi. Polymeric Genes (Additive Genes) (Kaddu) (9 Discoid: 6 Spherical: 1 Long) Poissoid: 6 Spherical: 1 Long) Gene inhibits expression of other gene. Here, the 'I' gene for white feathers inhibits activity of gene. I = iicc = White iiC_ = Red Can be due to RNAi. When 2 genes are present in the dominant phenotype condition, they 'add' and produce a different phenoty However, both produce same phenotype when only one of them is present in the dominant phenotype	Phenomenon	Example	Phen. Ratio	Comments
(Additive Genes) (Yaddu) (P Discoid: 6 Spherical: 1 Long) (P Discoid: 6	Inhibitory Genes			Epistasis. Dominant phenotype of one gene inhibits expression of other gene. Here, the 'I' gene for white feathers inhibits activity of 'C' gene. I = iicc = White iiC_ = Red
Here, A_B_ produces discoid shape. aaB_ = A_bb produces spherical. aabb procudes cylindrical from	1 -	(Kaddu)	9:6:1	condition, they 'add' and produce a different phenotype. However, both produce same phenotype when only one of them is present in the dominant phenotype condition. Here, A_B_ produces discoid shape. aaB_ = A_bb produces spherical. aabb procudes cylindrical fruit. However, it is different from quantitative inheritance as, for
Supplementary Genes 9:3:4	Supplementary Genes		9:3:4	